
GRASA Event Locator Documentation
Release 1.0.0

Team Platypus

Jun 05, 2020

About:

1 About this project 3
1.1 High level project description . 3
1.2 Objectives . 3
1.3 Project team . 4

2 Features and Systems 5
2.1 Families . 5
2.2 Program Providers . 6
2.3 GRASA and Monroe County Staff . 7
2.4 All users . 8

3 Open source licenses 9

4 Base System 11
4.1 Change password . 11
4.2 Update email . 13

5 Event Curation System 17
5.1 How to invite a Provider to sign up . 17
5.2 How to review Provider account registrations . 19
5.3 How to review and publish Events . 21
5.4 How to create a new Event . 22
5.5 How to edit an existing Event . 23
5.6 How to register a Provider account . 24

6 Search System 27
6.1 How to search for Events . 27
6.2 How to share an Event . 30

7 Deployment architecture 31

8 Admin quick start guide 33
8.1 Dependencies . 33
8.2 Set up database . 33
8.3 Install your configuration . 34
8.4 Container host set-up . 34
8.5 Start Event Locator . 34

i

8.6 Stop Event Locator . 34
8.7 Restart Event Locator . 35

9 Third-party APIs 37
9.1 Geocoding service: MapQuest API . 37
9.2 Email/SMTP service . 38

10 Upgrade guide 39
10.1 Why you might want to upgrade . 39
10.2 Database Concerns . 39
10.3 How To Actually Upgrade . 40

11 How to: Add new dependencies / libraries 41
11.1 Set up a Pipenv shell . 41
11.2 Installing dependencies for testing . 41
11.3 Installing dependencies for the team . 42
11.4 FAQ . 42

12 How to: Conduct user testing 43
12.1 Background . 43
12.2 Questionnaire . 43
12.3 Tasks . 44
12.4 Template . 44

13 How to: Exec into a container 45
13.1 Background . 45
13.2 Pre-requirements . 45
13.3 Commands . 45

14 How to: Rebuild search indexes 47
14.1 Background . 47
14.2 Pre-requirements . 47
14.3 Commands . 47

15 Create new dev environment 49
15.1 Requirements . 49
15.2 Setup . 49
15.3 Run project with docker-compose . 49
15.4 Open in web browser . 50

16 Refresh existing dev environment 51
16.1 Create a fresh environment . 51
16.2 Initial app configuration . 51

17 Troubleshooting 53
17.1 Q: On Fedora, Pipenv fails with MySQL config error . 53
17.2 Database changes during development . 53

ii

GRASA Event Locator Documentation, Release 1.0.0

This is the main page for the GRASA Event Locator documentation. Other pages are available for you to navigate and
explore below. For more information, see the repo on GitHub.

About: 1

https://github.com/jwflory/django-rit-grasa

GRASA Event Locator Documentation, Release 1.0.0

2 About:

CHAPTER 1

About this project

The GRASA Event Locator is an event locator system to connect Monroe County families to out-of-school programs in
the Greater Rochester area. This application was created for the Greater Rochester After-School Alliance and Monroe
County, New York by Team Platypus at the Rochester Institute of Technology.

1.1 High level project description

This takes the form of a web page containing a map that can be searched for after-school events. Users are presented
with further information and registration options. This information was originally delivered via the Explore Monroe
website as well as a physical book, the “Adult Guide to Youth Services”, both which GRASA and the Monroe County
government wish to retire due to lack of maintenance. GRASA representatives presented Team Platypus with several
examples, including Newark Thrives and the Dallas After-School Network as examples of final deliverables.

The main highlight of the GRASA Event Locator is the map. Similar to the Newark Thrives Youth Program Locator,
the end user uses a search box with various filters and an interactive map to locate programs. Evemts are added to the
site by providers via an account system. An administrator from GRASA and the Monroe County government approves
these accounts, as well as creation and edits of an event.

For the purposes of this project, the Event Locator does not support programs and events beyond Monroe County.

1.2 Objectives

The system accomplishes the following objectives for these user groups:

1.2.1 Families

• Search for different programs and resources.

• Apply filters to better discover programs and resources that interest them.

• Find information to learn more about a specific program.

3

https://www.racf.org/About/Giving-Circles-Initiatives-and-Partnerships/Greater-Rochester-After-School-Alliance
https://www.rit.edu/
http://exploremonroeny.com/calendar
http://exploremonroeny.com/calendar
https://www2.monroecounty.gov/files/youth/Adult_Guide%202011.pdf
http://youthprogramlocator.newark-thrives.org/
http://dasn.force.com/dapf/ProgramFinder
http://youthprogramlocator.newark-thrives.org/

GRASA Event Locator Documentation, Release 1.0.0

1.2.2 Program providers

• Add new programs with specific session info (dates/time/location) into system for approval by administrators.

• Update information for existing programs in system for approval by administrators.

1.2.3 GRASA and Monroe County staff

• Review and approve submitted programs.

• Confirm registration of new provider accounts.

1.3 Project team

The GRASA Events Locator was created by Team Platypus at the Rochester Institute of Technology. This project was
facilitated through the ISTE-500/501 Senior Development course offered by the School of Information. The project
team members are as follows:

• DiDonato, Lauren

• Flory, Justin W.

• Larrimore, Nathaniel

• Leong, Harrison

• Levasseur, Eli

• Mon, Lei

4 Chapter 1. About this project

https://www.rit.edu/
https://www.rit.edu/computing/school-of-information
https://github.com/ldidonato
https://github.com/jwflory
https://github.com/nlMeminger
https://github.com/leong96
https://github.com/eguy006
https://github.com/leiyinmon

CHAPTER 2

Features and Systems

This page explains features across all three systems of the Event Locator:

1. Base System

2. Event Curation System

3. Search System

Features are grouped together by which one of the three user groups they impact:

• Families

• Program Providers

• GRASA and Monroe County Staff

2.1 Families

2.1.1 Search for different events.

• Status: Implemented

• Technology decision: Haystack, Whoosh

• Relevant domain(s): Database

• Summary of approach: Use Django Haystack to search the database of events using a keyword match search.

• Completion criteria:

– Unauthenticated user runs successful search query to return results about after-school programs in an area.

– Information is provided if it exists; the user is informed if it does not exist.

5

https://haystacksearch.org/
https://whoosh.readthedocs.io/en/latest/intro.html

GRASA Event Locator Documentation, Release 1.0.0

2.1.2 Apply filters to better discover events that interest a user.

• Status: Implemented

• Technology decision: Haystack, Django Forms, Jinja

• Relevant domain(s): Database

• Summary of approach: Create Haystack search filters that mirror metadata we save in our database.

• Completion criteria:

– Unauthenticated user alters search query by choosing from a list of preset filters.

– More detailed information is discovered in search when filters are displayed.

2.1.3 Find information to learn more about a specific event.

• Status: Implemented

• Technology decision: Django Forms, Jinja

• Relevant domain(s): Database, front-end

• Summary of approach: Create a unique, addressable page for every event by pulling data from the database
and injecting it into front-end HTML with Jinja inclusions.

• Completion criteria:

– Unauthenticated user is able to navigate to an event’s unique page from search UI.

– Any user can share a direct link to event page details with another user.

2.2 Program Providers

2.2.1 Add new events with specific metadata into system for approval by adminis-
trators.

• Status: Implemented

• Technology decision: Django Forms

• Relevant domain(s): Full stack

• Summary of approach: Create Forms to validate user input and create new events in the events database table.

• Completion criteria:

– Provider is able to log into application.

– Provider submits new event for review with required details:

* Title

* Description

* Website

* Address

* Suggested age groups

* Activity type

6 Chapter 2. Features and Systems

https://haystacksearch.org/
https://docs.djangoproject.com/en/2.2/topics/forms/
https://palletsprojects.com/p/jinja/
https://docs.djangoproject.com/en/2.2/topics/forms/
https://palletsprojects.com/p/jinja/
https://docs.djangoproject.com/en/2.2/topics/forms/

GRASA Event Locator Documentation, Release 1.0.0

* Etc.

2.2.2 Update information for existing events in system for approval by administra-
tors.

• Status: Implemented

• Technology decision: User authentication modules provided in Django, Django Forms for basic user input

• Relevant domain(s): Full stack

• Summary of approach: Allow an authenticated user to edit Forms for events they themselves have created.

• Completion criteria:

– Provider is able to log into application.

– Provider edits an existing event that they already contributed.

– Event re-enters review queue for admin users.

2.3 GRASA and Monroe County Staff

2.3.1 Review and approve submitted events.

• Status: Implemented

• Technology decision: User authentication modules provided in Django, Django Forms for managing event data,
email (via Mailgun)

• Relevant domain(s): Full stack

• Summary of approach: A status field in the database will be edited for an event depending if it is pending
review, approved, or rejected; only approved events appear on the public site.

• Completion criteria:

– Admin is able to log into application.

– Admin is able to edit a pending event and change its status (approved or rejected).

– Provider is emailed when their event status is changed.

2.3.2 Confirm new provider accounts.

• Status: Implemented

• Technology decision: User authentication modules provided in Django, email (via Mailgun)

• Relevant domain(s): Back-end, database

• Summary of approach: Allow anyone to self-register on the website using Django Forms to gather information
about the user and saving the User object to the database when registration process completes.

• Completion criteria:

– Admin is able to log into application.

– Registered user is able to log in as a provider once admin confirms user’s registration.

2.3. GRASA and Monroe County Staff 7

https://docs.djangoproject.com/en/2.2/topics/auth/
https://docs.djangoproject.com/en/2.2/topics/forms/
https://docs.djangoproject.com/en/2.2/topics/auth/
https://docs.djangoproject.com/en/2.2/topics/forms/
https://www.mailgun.com/pricing
https://docs.djangoproject.com/en/2.2/topics/auth/
https://www.mailgun.com/pricing

GRASA Event Locator Documentation, Release 1.0.0

2.4 All users

2.4.1 Mobile-friendly user interface.

• Status: Implemented

• Relevant domain(s): Front-end

• Summary of approach: Ensure web application appears correctly on modern smartphones and mobile devices
by manual QA testing.

• Completion criteria:

– Core functionality works smoothly on mobile device as it does computing device.

8 Chapter 2. Features and Systems

CHAPTER 3

Open source licenses

This project was built with Free and Open Source Software. Thank you to the following projects for making this work
possible:

Name Version License
Babel 2.7.0 BSD
Click 7.0 BSD
Django 2.2.6 BSD
Jinja2 2.10.3 BSD-3-Clause
MarkupSafe 1.1.1 BSD-3-Clause
PyYAML 5.1.2 MIT
Pygments 2.4.2 BSD License
Sphinx 2.2.1 BSD
Whoosh 2.7.4 Two-clause BSD license
alabaster 0.7.12 UNKNOWN
appdirs 1.4.3 MIT
argon2-cffi 19.2.0 MIT
asgiref 3.2.3 BSD
atomicwrites 1.3.0 MIT
attrs 19.3.0 MIT
bcrypt 3.1.7 Apache License, Version 2.0
black 19.10b0 MIT
certifi 2019.9.11 MPL-2.0
cffi 1.13.2 MIT
chardet 3.0.4 LGPL
commonmark 0.9.1 BSD-3-Clause
coverage 5.0b1 Apache 2.0
django-appconf 1.0.3 BSD
django-compressor 2.3 MIT
django-debug-toolbar 2.1 BSD
django-haystack 2.8.1 UNKNOWN

Continued on next page

9

GRASA Event Locator Documentation, Release 1.0.0

Table 1 – continued from previous page
Name Version License
docutils 0.15.2 public domain, Python, 2-Clause BSD, GPL 3
entrypoints 0.3 UNKNOWN
filelock 3.0.12 Public Domain <http://unlicense.org>
flake8 3.7.9 MIT
idna 2.8 BSD-like
imagesize 1.1.0 MIT
importlib-metadata 0.23 Apache Software License
mccabe 0.6.1 Expat license
more-itertools 7.2.0 MIT
mysqlclient 1.4.4 GPL
packaging 19.2 BSD or Apache License, Version 2.0
pathspec 0.6.0 MPL 2.0
pluggy 0.13.0 MIT license
psycopg2-binary 2.8.4 LGPL with exceptions or ZPL
py 1.8.0 MIT license
pycodestyle 2.5.0 Expat license
pycparser 2.19 BSD
pyflakes 2.1.1 MIT
pyparsing 2.4.5 MIT License
pytest 5.2.4 MIT license
pytz 2019.3 MIT
rcssmin 1.0.6 Apache License
recommonmark 0.6.0 MIT
regex 2019.11.1 Python Software Foundation License
requests 2.22.0 Apache 2.0
rjsmin 1.1.0 Apache License, Version 2.0
six 1.13.0 MIT
snowballstemmer 2.0.0 BSD-3-Clause
sphinx-rtd-theme 0.4.3 MIT
sphinxcontrib-applehelp 1.0.1 UNKNOWN
sphinxcontrib-devhelp 1.0.1 UNKNOWN
sphinxcontrib-htmlhelp 1.0.2 UNKNOWN
sphinxcontrib-jsmath 1.0.1 BSD
sphinxcontrib-qthelp 1.0.2 UNKNOWN
sphinxcontrib-serializinghtml 1.1.3 UNKNOWN
sqlparse 0.3.0 BSD
toml 0.10.0 MIT
tox 3.14.1 MIT
typed-ast 1.4.0 Apache License 2.0
urllib3 1.25.7 MIT
virtualenv 16.7.7 MIT
wcwidth 0.1.7 MIT
zipp 0.6.0 UNKNOWN

Generated with pip-licenses.

10 Chapter 3. Open source licenses

http://unlicense.org
https://pypi.org/project/pip-licenses/

CHAPTER 4

Base System

This chapter of User Documentation covers the Base System of the GRASA Event Locator. In this document,
“Users” refers to Administrator Users of the application that are responsible for day-to-day review and curation of
events in the Event Locator.

4.1 Change password

This page explains how to change the password of either an Admin or Provider account.

4.1.1 Admin User

1. Navigate to Admin Portal page by clicking on Admin button in top-right corner. Admin Portal opens.

2. Look for Settings drop-down menu in the center-right part of the screen.

3. Click Change Password:

11

GRASA Event Locator Documentation, Release 1.0.0

Screenshot
of "Change Password" option in drop-down menu for Admins

4. The Change Password box appears. Enter the current password, the new password, and confirm the new pass-
word.

5. Click Save Changes.

The password is now changed.

4.1.2 Provider User

The Provider password change experience is similar.

1. Navigate to Provider Portal page by clicking on organization name button in top-right corner. Provider Portal
opens.

2. Look for Settings drop-down menu in the center-right part of the screen.

3. Click Change Password:

12 Chapter 4. Base System

GRASA Event Locator Documentation, Release 1.0.0

Screenshot
of "Change Password" option in drop-down menu for Providers

4. The Change Password box appears. Enter the current password, the new password, and confirm the new pass-
word.

5. Click Save Changes.

The password is now changed.

4.2 Update email

This page explains how to change the email of either an Admin User or a Provider User.

4.2.1 Admin User

1. Navigate to Admin Portal page by clicking on Admin button in top-right corner. Admin Portal opens.

2. Look for Settings drop-down menu in the center-right part of the screen.

3. Click Change Email:

4.2. Update email 13

GRASA Event Locator Documentation, Release 1.0.0

Screenshot
of "Change Email" option in drop-down menu for Admins

4. Enter the new email in the text box and click Save.

5. A notification email is sent to the old and new email addresses.

4.2.2 Provider User

The Provider password change experience is similar.

1. Navigate to Provider Portal page by clicking on organization name button in top-right corner. Provider Portal
opens.

2. Look for Settings drop-down menu in the center-right part of the screen.

3. Click Change Email:

14 Chapter 4. Base System

GRASA Event Locator Documentation, Release 1.0.0

Screenshot
of "Change Email" option in drop-down menu for Providers

4. Enter the new email in the text box and click Save.

5. A notification email is sent to the old and new email addresses.

4.2. Update email 15

GRASA Event Locator Documentation, Release 1.0.0

16 Chapter 4. Base System

CHAPTER 5

Event Curation System

This chapter of User Documentation covers the Event Curation System of the GRASA Event Locator. In this
document, “Users” refers to Administrator Users of the application that are responsible for day-to-day review and
curation of events in the Event Locator.

5.1 How to invite a Provider to sign up

This page explains how an Administrator can invite a Provider to sign up for the Event Locator via email.

17

GRASA Event Locator Documentation, Release 1.0.0

5.1.1 1. Click View Providers button from Admin Portal:

Screenshot
of "View Providers" button from Admin Portal

5.1.2 2. Click Invite Provider button in upper-right corner:

Screenshot
of "All Providers" page, including "Invite Provider" button

18 Chapter 5. Event Curation System

GRASA Event Locator Documentation, Release 1.0.0

5.1.3 3. Enter email and click Send Invite:

Screenshot
of prompt for inviting someone via email

5.1.4 4. Wait for registration

Once Send Invite is clicked, an email with instructions to register is sent to the email address. It is up to the Provider
to finish the registration. Their account is not created when they are invited; the invitation only prompts them register
and start adding Events.

5.2 How to review Provider account registrations

This page explains how an Administrator reviews new Provider account registrations. New account registrations are
either Approved or Denied.

5.2.1 View pending accounts

If there are pending accounts awaiting review, they appear on the Admin Panel:

Screenshot
of a user pending review by an Administrator

The Admin Panel is accessed by clicking the organization name next to the Logout button:

5.2. How to review Provider account registrations 19

GRASA Event Locator Documentation, Release 1.0.0

Screenshot of buttons to access Admin Panel and logout

5.2.2 Approve an account

To approve an account, click Approve next to their entry in the Pending Users table. Once approved, the Provider and
their organization contact are sent an approval notification via email.

5.2.3 Reject an account

To reject an account, click Deny next to their entry in the Pending Users table. You are prompted for a rejection reason:

Deny
New Provider modal screenshot

20 Chapter 5. Event Curation System

GRASA Event Locator Documentation, Release 1.0.0

Once rejected, an email is sent to the Provider with the provided rejection reason. They are instructed to follow up
with an Administrator for info if needed.

5.3 How to review and publish Events

This page explains how an Administrator reviews Events to publish in the Search System. This includes new Events
and edits to existing Events. Since the process is identical, these instructions work for both new Events and edits to
existing Events.

5.3.1 View pending Events

If there are pending Events awaiting review, they appear on the Admin Panel:

Screenshot
of Events pending review by an Administrator

The Admin Panel is accessed by clicking the organization name next to the Logout button:

Screenshot of buttons to access Admin Panel and logout

5.3.2 Approve an Event

To approve an Event, click Approve next to their entry in the Pending Users table. Once approved, the Provider and
their organization contact are sent an approval notification via email.

5.3.3 Reject an Event

To reject an Event, click Deny next to their entry in the Pending Users table. You are prompted for a rejection reason:

5.3. How to review and publish Events 21

GRASA Event Locator Documentation, Release 1.0.0

Deny
New Event modal screenshot

Once rejected, an email is sent to the Provider with the provided rejection reason. They are instructed to follow up
with an Administrator for info if needed.

5.4 How to create a new Event

This page explains how to create new Events. Events are searched on a virtual “bulletin board” of events. This explains
how to create a new Event and other details about writing evergreen content.

5.4.1 Add new Event

Use the Add New Event button from the Provider Portal to submit a new Event for review:

22 Chapter 5. Event Curation System

GRASA Event Locator Documentation, Release 1.0.0

Screenshot
of "Add New Event" button in Provider Portal

Complete the form on the next page with details about your Event. Once done, click Validate Event. If you receive
feedback about corrections, please double-check the data you entered is correct. Your new Event awaits approval by
an Administrator user (admins: see “How to review and publish new Events”)

5.4.2 How to write strategically

Since dates/times are not collected about events, the more metadata a Provider adds, the better chance an Event is
found. The Event Locator is best for recurring events that repeat multiple times in a school year, semester, or term.
If the Event happens only once, provide a good description and website for someone to learn more about your
program, including when (month, day, year, and time). The website field is also great for external ticketing sites, e.g.
Eventbrite.

Worried about getting everything right? No worries, you will always have opportunities to edit your Event later.

5.5 How to edit an existing Event

This page explains how to edit existing Events.

5.5. How to edit an existing Event 23

https://eventbrite.com

GRASA Event Locator Documentation, Release 1.0.0

5.5.1 Requirements

In order to edit Events, you must be logged in as a Provider user, looking at the Provider Portal page. This also
assumes you have at least one Event that is already approved.

5.5.2 1. Edit from event list

On the Provider Portal, view your list of submitted Events. Choose the one you want to change and click Edit:

Example
of editing Event (WiCHacks 2020) from Provider Portal

Like with creating new Events, change details of your Event as needed. When done, click Validate Event near the
lower-right corner. Once submitted, your Event edit awaits review by an Administrator.

5.5.3 2. Wait for Administrator approval

While your edit awaits review, you will see two copies of your Event, both with different statuses:

Example
of an Event with an edit awaiting review by an Administrator: Even though two appear, only one Event exists

It is not recommended to edit an Event again while an edit is pending approval. While it is possible to edit an Event
more than once, changes are not preserved across multiple edits. The full contents of the final edit approved (by an
Administrator) is always the published version.

Once an edit is reviewed by an Administrator, the Provider receives an email notification of the status change. If
approved, the Event edit is immediately displayed in the public site.

5.6 How to register a Provider account

This page explains how to create a new Provider account in the Event Locator.

24 Chapter 5. Event Curation System

GRASA Event Locator Documentation, Release 1.0.0

5.6.1 1. Get an invitation

Typically, a Provider is invited to use the Event Locator by an Administrator. The invitation email includes a URL to
the site registration page (developers: localhost:8000/register.html). A link can also be found from the Login page.

5.6.2 2. Complete registration form

The registration form helps Administrators understand who is registering and on behalf of what organization:

Screenshot
of registration form, taken on 2019 Nov. 17

• Information about you:

– Organization Name: organization/entity/program that Provider is associated with

– Email Address: Provider’s email address, used for login

• Information about your organization contact:

– Name: Name of someone an Administrator may contact in your organization

– Email: Email address of that contact

– Phone: Best phone number for that contact

5.6. How to register a Provider account 25

http://localhost:8000/register.html

GRASA Event Locator Documentation, Release 1.0.0

Complete the requested information and click Submit. Your request to register an account was received.

5.6.3 3. Wait for Administrator approval

Because registration is public and an invitation is not required to register, all new accounts must be approved by
Administrators. New accounts are reviewed by an Administrator before they are activated (admins: see “How to
review Provider account registrations”) Once an Administrator reviews an account, a status change notification is sent
to the Provider’s email address.

5.6.4 4. Log in

Once your account is activated, you can log in. Use the Login button in the top-right corner to log into the Event
Locator. Once you enter your credentials, you are redirected to the Provider Portal.

26 Chapter 5. Event Curation System

CHAPTER 6

Search System

This chapter of User Documentation covers the Search System of the GRASA Event Locator. In this document,
“Users” refers to Administrator Users of the application that are responsible for day-to-day review and curation of
events in the Event Locator.

6.1 How to search for Events

This page explains how to search for Events in the Event Curation System. It also explains less obvious parts of the
Search System.

6.1.1 Make a keyword search

The default home page is the Search System. Type a keyword into the search bar at the top of the page. Click Search
or press enter to run your search query. Any matches will be shown in the search result list and on the map:

27

GRASA Event Locator Documentation, Release 1.0.0

Screenshot
of an example search with keyword "kids"

6.1.2 Apply filters

A search can apply filters to narrow down a search on specific criteria. Types of search filters include the following:

• Activity

• Transportation provided

• Grades served

• Gender

• Fees

• Timing

28 Chapter 6. Search System

GRASA Event Locator Documentation, Release 1.0.0

Screenshot
of available filters, "Timing" menu expanded

6.1. How to search for Events 29

GRASA Event Locator Documentation, Release 1.0.0

6.1.3 Other notes about Search System

• Search results are listed in alphabetical order by name of the event.

6.2 How to share an Event

This page explains how to share an Event with someone else, either as an email or on social media. The best way to
share an event with others is to load the profile page of an Event. The profile page of an Event is opened by clicking on
the Event entry in the search results. The URL is unique to a specific Event and can be shared with others. Someone
else will be able to share the detailed view of a specific Event with someone else.

Screenshot
of an example event profile page

30 Chapter 6. Search System

CHAPTER 7

Deployment architecture

This document explains the anticipated deployment architecture of the GRASA Event Locator. At the most simple
form, a production environment for the Event Locator will look like this:

31

GRASA Event Locator Documentation, Release 1.0.0

GRASA
Event Locator Deployment Architecture: git repo -> container host <-> database server

The bottom-right circle is a “closer look” at how the Container Host works:

• Operating System: CentOS 7 (7.6+ preferred)

• Container Manager: Docker (installed to base Operating System as a hypervisor of sorts)

• Container Image: Container Manager starts with Container Image pulled from Docker Hub, a repository of
Docker container images

– In this case, the base Container Image is the official python:3.6-stretch image, which in turn is
based off of a minimal Debian image.

• Web Application: GRASA Event Locator source code copied into Container Image and ran as Python 3/Django
2 web application

32 Chapter 7. Deployment architecture

https://hub.docker.com/
https://hub.docker.com/_/python

CHAPTER 8

Admin quick start guide

This page explains how to install and set up the application for a production environment. These instructions focus on
new installations only.

8.1 Dependencies

The following dependencies must be satisfied for the app to work:

1. CentOS 7.5+

2. Python 3

3. Docker

Once the dependencies are in place, place a copy of the project source code (preferably with git) in the directory of
your choice.

8.2 Set up database

The Event Locator is designed to have a standalone database paired with it. The database is linked to the app through
the config file.

To get started, install MySQL/MariaDB and set up a login for the application. On CentOS 7, the MariaDB package
can be installed as follows:

sudo yum install -y mariadb-server mariadb

Create a user and database for the application. Make sure the user has write access to the database.
Add these credentials and information (host, username, password, database name) to the config file (see
[config.yml.example](https://github.com/jwflory/django-rit-grasa/blob/master/config.yml.example “Upstream
sample config file” for config file documentation).

33

https://www.python.org/downloads/
https://docs.docker.com/install/

GRASA Event Locator Documentation, Release 1.0.0

8.3 Install your configuration

Copy the config.yml.example file to config.yml inside of the git repo. Edit the config file to your prefer-
ences (see [config.yml.example](https://github.com/jwflory/django-rit-grasa/blob/master/config.yml.example
“Upstream sample config file” for config file documentation).

NOTE: Any time you make changes to the config file, the container image must be rebuilt.

8.4 Container host set-up

We need to build the container with all the code and config file changes, and to do that use this command:

python3 up.py --setup

What this does is build the container from the Dockerfile.production file and migrates the database so that it will have
all the necessary tables when the container is started.

8.5 Start Event Locator

Choose the port to run the app on (useful for HTTP vs. HTTPS):

up.py --start -p <port number>

This command starts the container, and then queries the database to load any already submitted events.

8.5.1 Run initialization script

When the application is installed for the first time, an initialization script must be executed. The initialization script
sets up activity filters and creates a first admin user with the admin_email from the config file. The initial admin
has a default password of Password1 (please change after first login!). The script will only work if two conditions
are both met:

1. No admin users already exist

2. Activity filters do not yet exist in database

Thus, it is important this step is followed first.

The initialization script is triggered by navigating to the following URL:

<site_name>/initial_setup

_site_name is also managed in the config file. For example, in development, this might be local-
host:8000/initial_setup.

8.6 Stop Event Locator

If you need to stop the app for any reason, this can be done with this command:

up.py --stop

34 Chapter 8. Admin quick start guide

http://localhost:8000/initial_setup
http://localhost:8000/initial_setup

GRASA Event Locator Documentation, Release 1.0.0

8.7 Restart Event Locator

If for any reason you need to restart the container without rebuilding, you can use this command:

up.py --restart -p <port number>

8.7. Restart Event Locator 35

GRASA Event Locator Documentation, Release 1.0.0

36 Chapter 8. Admin quick start guide

CHAPTER 9

Third-party APIs

This page describes third-party API services used in the application, how they are used, and how to set them up.

9.1 Geocoding service: MapQuest API

An API token for this service is required for the map functionality of the Event Locator to work.

The MapQuest API translates an address provided by a Program Provider to a pair of latitude/longitude coordinates.
These coordinates are used in the front-end to create markers on the map for events.

9.1.1 How it is used

The MapQuest API token is set in the configuration file (see config.yml.example). The secret token is auto-
matically used in front-end HTML files. Administrators only need to maintain the API token in the production config
file.

The API request is made when an address is added or changed on a new event or an edited event.

9.1.2 How to acquire API access

Register for a MapQuest Developer API key.

9.1.3 Cost considerations

A free API key is limited to 15,000 requests a month. The API is only used when a new event is created or an existing
event is edited (explained above). Therefore, it is highly unlikely for the API to graduate to a paid tier unless the
application grows significantly. The next price tier is 30,000 requests a month for $99/month; see pricing and plans
for more information.

37

https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register
https://developer.mapquest.com/plans

GRASA Event Locator Documentation, Release 1.0.0

9.2 Email/SMTP service

The Event Locator also needs an SMTP server for dispatching email. This information is managed in the config file
(see config.yml.example for an example). If an existing SMTP mail server already exists, it may be used in the
application.

However, in the event that an on-premise SMTP server is not available, we suggest using any of the following services
and their email APIs:

• Mailgun (about, pricing)

• SendGrid (about, pricing)

• Mandrill (about, pricing)

38 Chapter 9. Third-party APIs

https://www.mailgun.com/
https://www.mailgun.com/email-api
https://www.mailgun.com/pricing
https://sendgrid.com/
https://sendgrid.com/use-cases/transactional-email/
https://sendgrid.com/pricing/
https://mandrill.com/
https://mandrill.com/features/
https://mandrill.com/pricing/

CHAPTER 10

Upgrade guide

10.1 Why you might want to upgrade

1. if a new version were released or

2. You have new features you have developed that you would like to move into production.

Note: If you’re adding your own development features, this guide assumes you have fully tested everything.

10.2 Database Concerns

It is highly recommended to make a backup of your database before making any upgrades.If the new version you are
upgrading to has database schema changes, then you will need to upgrade your migrations file and remigrate your
database.This will most likely wipe your data. The following scenarios are examples of where data may or may not
be deleted:

• Deleting a model. If the user is doing this, there’s guaranteed data loss for the obvious reason; you’re deleting a
table that had app data; that’s the reason the table was there in the first place.

• Adding a model. There’s no data loss from this; adding a table shouldn’t affect the app’s behavior, at least
assuming no changes to the code.

• Removing columns from an existing table. Obvious data loss here, a whole column is being removed.

• Adding columns to an existing table. Adding some types of columns to a table will force you to also specify
a default value (ie contact_name = models.CharField(max_length=255, default=”Name not Specified”)). Some
will not (ie models.TextField). No data is lost, though if a column that requires a default is added to a table,
existing entries will now have that default value in the column post-migration.

It is recommended to start a new database alongside your current database and update your config file with the new
database information.Then you can copy your old data over. This should be tested before moving new code to
production using a copy of your data.You have been warned.

39

GRASA Event Locator Documentation, Release 1.0.0

10.3 How To Actually Upgrade

The upgrade process is rather simple. The steps for upgrading to a new version of the GRASA Event Locator are as
follows:

1. Stop the current running application by running:

./up.py --stop

2. Move the new code into location. This can either be done by copying all the code into the directory using git,
and downloading the new production code from a remote repository, or by downloading a zip file with all the
code into a new directory and esentially starting over.

3. Rebuild the container to now include the new code using this command:

./up.py --setup

4. If the rebuild step is successful, then start the application with this command:

./up.py --start --port <port number>

If your data is going to remain intact and all your users are still there, then you should not need to go to
<site_name>/initial_setup again.However if you’re starting with a new, empty, database you will need to browse to
<site_name>/initial_setup again.

40 Chapter 10. Upgrade guide

CHAPTER 11

How to: Add new dependencies / libraries

If we use a new library or framework, we need to install it as a dependency in the project. Dependencies are specific
versions of third-party software we want to use in the project. Sometimes we want to test something out, without
adding it to the project for everyone. Other times, we want to install something to the project for everyone. This guide
explains both below:

11.1 Set up a Pipenv shell

First, for either option, start a new Pipenv shell for your local development. The Pipenv shell sets up a Python virtual
environment (virtualenv) for you. This way, you can install Python packages via pip without special user privileges,
among other reasons.

Using a command-line tool of your preference, change directories to the project git directory and run the following
commands:

pip3 install --user pipenv
pipenv shell

Pipenv will set up a virtualenv for you. Once it is done, you can now install packages using pip into the virtualenv.

11.2 Installing dependencies for testing

If you are trying out new libraries or third-party software, but aren’t sure if you want to keep it yet, use pip install.

Simply use pip install <package name> to install any package from the Python Package Index (PyPI). The
package you install is available on your workstation, but not for everyone else. This lets you test something out without
committing everyone to using it yet.

41

GRASA Event Locator Documentation, Release 1.0.0

11.3 Installing dependencies for the team

If you are confident in using a library or third-party software, use pipenv install.

Once you know a package and are confident in keeping it, install it as a project dependency. This makes it available
for everyone when they run docker-compose build again. Otherwise, when someone runs your changes, the
Django app will crash because of a missing dependency.

There are two steps to installing new dependencies:

1. pipenv install [--dev] <package name>

2. pipenv update --dev

Run the first command with the --dev flag if installing a dependency only for development environments, not pro-
duction. The second command updates the Pipfile.lock file with your changes and ensures the versions installed
locally match what is specified in Pipfile.lock.

11.4 FAQ

11.4.1 When testing dependencies, should pip or pip3 be run?

If in doubt, use them exactly as written above.

When you install pipenv, this guide assumes you are running Python 3. pip3 is an explicit process call to your
system’s installed Python 3 interpreter. If you do not have Python 2 installed, pip probably does the same thing.
Later, after opening a pipenv shell, the Python virtualenv rewrites the meaning of pip to whatever the specified
python_version is in Pipfile. So long as you are in the shell, pip will always mean the same thing as pip3.

42 Chapter 11. How to: Add new dependencies / libraries

CHAPTER 12

How to: Conduct user testing

This is a how-to article to explain how to run user testing sessions for the GRASA Event Locator. It intends to be a
blueprint for these sessions but it is not exhaustive.

12.1 Background

User testing is a helpful way to collect feedback about how people use and interact with our application. To date, Lei
Mon conducted user tests early on in the development cycle. This guide is formed from her notes and questions. For
consistency’s sake, make sure user tests are as consistent as possible across sessions.

12.2 Questionnaire

These are questions to answer during user testing. Feel free to add new ones through a pull request:

1. User demographics

• Age, race/ethnicity, occupation, etc.

• Ask interviewee how they identify

2. Estimated background with technology?

3. Overall familiarity with desktop or mobile devices?

4. What are users’ thoughts while viewing search/filter on the homepage?

5. How easy or difficult was it to navigate across the pages?

6. Is there anything the user does not understand?

7. What are users’ overall thoughts on the design and layout?

8. How long did it take the user to complete a task?

9. User’s overall satisfaction with website?

43

GRASA Event Locator Documentation, Release 1.0.0

10. What did the user like the most and the least?

11. Any problems finding the information wanted by the user?

12. Any difficulties using it on mobile devices?

13. Does the user prefer a mobile or desktop view?

12.3 Tasks

This is an idea list of tasks you can run a user through, depending what user they simulate.

12.3.1 Admins

• Change Site Logo

• Approve new user

• Reject new user

• Approve new event

• Reject new event

12.3.2 Providers

• Login

• Register

• Forgot Password

• Create Event

• Edit Event

• Change Organization Logo

12.3.3 Families

• Filter for an Event

• View Event

12.4 Template

44 Chapter 12. How to: Conduct user testing

CHAPTER 13

How to: Exec into a container

This how-to article explains how to open a shell inside of a Docker container for advanced debugging capabilities.

13.1 Background

Containers add a large of abstraction to working on the project. Or said differently, they hide many parts of your
environment, compared to running it locally. Sometimes you need more advanced commands or functionality to
debug a tricky problem. This guide teaches how to debug issues by opening a shell inside of a container.

13.2 Pre-requirements

Docker and Docker Compose should be installed. This guide is written for the command-line interface of Docker.
This varies across operating systems, but refer to Docker docs for more help.

Start the local containers with docker-compose up. In a new window, note the names of the running containers
(docker ps); you will need the name of the web container later.

13.3 Commands

$ docker exec -it <container name> <"echo 'Some command here'">
$ docker exec -it web_1 /usr/bin/bash

45

https://docs.docker.com/install/

GRASA Event Locator Documentation, Release 1.0.0

46 Chapter 13. How to: Exec into a container

CHAPTER 14

How to: Rebuild search indexes

This is a how-to article to rebuild the Whoosh/Haystack search indexes when new events are added to the database.

14.1 Background

New events are added to the database periodically. For the new events to appear in search, the index needs to be rebuilt.
Once the index is rebuilt to include new events, they will appear in searches.

14.1.1 Development note

Automatic rebuilding of search indexes is planned. These steps are mostly intended for local development or to force
a index rebuild.

14.2 Pre-requirements

If running the project as a container, use docker exec to open a shell inside the web app container. See the How
to: Exec into a container doc for more info of how to do this.

If not running the project as a container, get to the environment where your Python 3 + Django installation exists.

14.3 Commands

If building index for first time:

python3 manage.py rebuild_index

If refreshing for new data, e.g. a new event:

47

GRASA Event Locator Documentation, Release 1.0.0

python3 manage.py update_index

48 Chapter 14. How to: Rebuild search indexes

CHAPTER 15

Create new dev environment

This page explains how to set up a new, local development environment to test the GRASA Event Locator system.

15.1 Requirements

• Docker

• docker-compose

15.2 Setup

A configuration file must be provided at start, either as a config.yml in the root directory of the project or a path
specified as a CONFIGPATH environment variable. For local development, run the following command to get started
with development:

cp config.yml.example config.yml

15.3 Run project with docker-compose

docker-compose is used for local development. It is convenient since it gives you a MySQL container to work
alongside the application; you do not have to set one up. Use the following commands to build the containers and then
start them:

docker-compose build
docker-compose up

These commands may require sudo depending on your operating system and installation option.

49

https://docs.docker.com/install/
https://docs.docker.com/compose/install/

GRASA Event Locator Documentation, Release 1.0.0

15.3.1 Run docker-compose in detached mode

Detached mode disables an output stream to your terminal. In other words, detached mode will not display logs in the
terminal window while running. Use the following command to run in detached mode:

docker-compose up --detach

To shut down docker-compose in detached mode, use this command:

docker-compose down

15.4 Open in web browser

Once docker-compose is running, open a web browser. Visit localhost:8000 to view the site running locally.

50 Chapter 15. Create new dev environment

http://localhost:8000/

CHAPTER 16

Refresh existing dev environment

Document owner: Harrison Leong (@leong96)

Are you working on this project, but afraid you messed something up? This page explains how to do a full reset and
start with a fresh environment:

16.1 Create a fresh environment

1. Make sure the application is stopped (docker-compose down).

2. Delete the database Docker volume (docker volume rm django-rit-grasa_djangograsa_db).

3. Make a copy ofconfig.yml.example and name it config.yml.

4. Rebuild the project containers and start the app (docker-compose up --build).

5. In a separate shell window, run docker ps, which shows all running containers. They should be mariadb and
django-rit-grasa.

• If for some reason, they are not both there, use docker ps -a to get the name of the list of all containers,
including the non running ones, then docker start [containerID] to start them.

6. Run the command docker exec -it [containerID for the django container] /bin/
bash.

7. Run python3 manage.py migrate

8. Run python3 manage.py rebuild_index

9. Visit localhost:8000 in a browser

16.2 Initial app configuration

These directions only apply to local development. See the Admin Quickstart for a production deployment.

51

https://github.com/leong96
http://localhost:8000

GRASA Event Locator Documentation, Release 1.0.0

1. Visit localhost:8000/admin_user

2. Visit localhost:8000/create_database

3. Site is now usable with the following admin account:

• Username: grasatest@yahoo.com

• Password: Password1

Note that the MySQL/MariaDB container is started automatically with a grasa_event_locator database, but
this will not happen automatically in production.

52 Chapter 16. Refresh existing dev environment

http://localhost:8000/admin_user
http://localhost:8000/create_database

CHAPTER 17

Troubleshooting

This page is a collection of miscellaneous tips, tricks, and other tidbits of info to make it easier to do troubleshooting
on the application.

17.1 Q: On Fedora, Pipenv fails with MySQL config error

On Fedora, pipenv install may fail with the following error:

OSError: mysql_config not found

Install the mariadb-connector-c-devel package. It includes the mysql_config/mariadb_config bi-
nary needed to install the mysqlclient library.

On Fedora:

sudo dnf install -y mariadb-connector-c-devel

17.2 Database changes during development

Occasionally, you get an error from the database changing (field not found, category matching query does not exist).
You can check this by checking if models.py was changed recently.

Open a shell to the Django container by exec’ing into the app container. Run the following commands:

python manage.py makemigrations
python manage.py migrate

Try the task again. If it works, make sure the generated database migration script is committed to the git repository
along with your other changes. If it does not work, try refreshing your development environment.

53

	About this project
	High level project description
	Objectives
	Project team

	Features and Systems
	Families
	Program Providers
	GRASA and Monroe County Staff
	All users

	Open source licenses
	Base System
	Change password
	Update email

	Event Curation System
	How to invite a Provider to sign up
	How to review Provider account registrations
	How to review and publish Events
	How to create a new Event
	How to edit an existing Event
	How to register a Provider account

	Search System
	How to search for Events
	How to share an Event

	Deployment architecture
	Admin quick start guide
	Dependencies
	Set up database
	Install your configuration
	Container host set-up
	Start Event Locator
	Stop Event Locator
	Restart Event Locator

	Third-party APIs
	Geocoding service: MapQuest API
	Email/SMTP service

	Upgrade guide
	Why you might want to upgrade
	Database Concerns
	How To Actually Upgrade

	How to: Add new dependencies / libraries
	Set up a Pipenv shell
	Installing dependencies for testing
	Installing dependencies for the team
	FAQ

	How to: Conduct user testing
	Background
	Questionnaire
	Tasks
	Template

	How to: Exec into a container
	Background
	Pre-requirements
	Commands

	How to: Rebuild search indexes
	Background
	Pre-requirements
	Commands

	Create new dev environment
	Requirements
	Setup
	Run project with docker-compose
	Open in web browser

	Refresh existing dev environment
	Create a fresh environment
	Initial app configuration

	Troubleshooting
	Q: On Fedora, Pipenv fails with MySQL config error
	Database changes during development

